High Quality Content by WIKIPEDIA articles! Proofs of the famous mathematical result that the rational number 22?7 is greater than ? date back to antiquity. What follows is a one-line modern mathematical proof that 22?7 > ?, requiring only elementary techniques from calculus. The purpose is not primarily to convince the reader that 22?7 is indeed bigger than ?; systematic methods of computing the value of ? exist. Unlike some elementary proofs, the calculus-based proof presented here is...
High Quality Content by WIKIPEDIA articles! Proofs of the famous mathematical result that the rational number 22?7 is greater than ? date back to antiquity. What follows is a one-line modern mathematical proof that 22?7 > ?, requiring only elementary techniques from calculus. The purpose is not primarily to convince the reader that 22?7 is indeed bigger than ?; systematic methods of computing the value of ? exist. Unlike some elementary proofs, the calculus-based proof presented here is straightforward; its elegance results from its connections to the theory of diophantine approximations. Stephen Lucas calls this proposition "One of the more beautiful results related to approximating ?". Julian Havil ends a discussion of continued fraction approximations of ? with the result, describing it as "impossible to resist mentioning" in that context.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.
Человек или деньги - кто кого? Этот вопрос стоит перед людьми с давних времен. Ответ на него дает искусство владеть деньгами, которое помогает устроить жизнь так, чтобы не деньги устанавливали власть над человеком, а человек над деньгами. Об этом наша книга.
Оставить комментарий